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CONTINUOUS KINETICS OF DEXTRAN 
DEGRADATION 

DIETER BROWARZIK 

Institute of Physical Chemistry 
Martin-Luther University Halle-Wittenberg 
06217 Merseburg, Germany 

ABSTRACT 

Degradation of dextranes is studied in the framework of a first- 
order continuous kinetics. Here, the dextranes are approximately de- 
scribed by Schulz-Flory distributions, the parameters of which depend 
on the time. A new expression is introduced for the continuous rate 
function which is the continuous generalization of the rate constants 
of usual kinetics. One factor of this expression describes the scission 
probability in dependence on the molecular weight. The other factor 
describes the dependence on the location of the bond to be broken within 
the molecule. The rate function introduced is especially suitable if the 
bonds near the ends of a molecule are preferentially broken. The model 
is applied to four dextran samples degraded by acid hydrolysis. All ex- 
perimental data may be described by a single set of three parameters. 

INTRODUCTION 

In continuous kinetics, degradation of polydisperse polymers is described by 
the continuous rate equation 

(. 

aw(M,t)/ar = , M ) w ( w , t ) t w  

Equation (1) is based on a first-order formalism, and all species are assumed 
to be of the same type. In Eq. (1) w(M,t)dM gives the amount of substance between 

397 

Copyright 0 1997 by Marcel Dekker, Inc. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
9
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



398 BROWARZIK 

the values M and M + dM of the molecular weight at time t .  The rate function 
K(M’ ,M) describes the breakage of a molecule of molecular weight M‘ into two 
molecules of molecular weights M and M’ - M. The function K(M‘,M) may be 
interpreted as the continuous generalization of the rate constants of usual kinetics. 
The first integral in Eq. (1) describes the formation of molecules of molecular 
weight M by degradation of higher molecules. The other terms on the right-hand 
side of Eq. (1) describe the destruction of such molecules by splitting in smaller 
molecules. A detailed derivation of Eq. (1) from usual kinetics was given by Kehlen, 
Ratzsch, and Bergmann [ 1 I .  

Analytical solutions of Eq. ( 1 )  were found for only some cases the simplest of 
which is the case of “random scission” [l-41, assuming all bonds break with equal 
probability. In the notation of this paper, that means K(M’,M) = constant. In 
recent years an essential advantage in solving Eq. (1) has been reached by Ziff and 
McGrady [S-7). For some special functions of K(M’,M) they found explicit solu- 
tions of the continuous rate Eq. (1). For functions K(M’,M) needed in practice, the 
exact solution of Eq. (1) is usually unknown. Recently, Williams [8] described a 
procedure to find general solutions of Eq. (1). At present, this very complicated 
method has not been demonstrated for a realistic case of K(M’,M). Because in the 
most cases of some interest there are no analytical solutions of the continuous rate 
equation, numerical methods are applied to solve it [9). 

Browarzik and Koch (101 proposed an approximation solution of Eq. (1) 
assuming a Schulz-Flory distribution with time-dependence parameters valid during 
the whole time of degradation. This method may be applied to a wide class of 
functions K(M’ ,M) in more detail, but only the type 

was considered. Despite its simplicity, Eq. (2) describes the scission probability in 
its dependence on the molecular weight of the polymer molecule and on the location 
of the bond to be broken within the molecule. If E* > 0 (E*  < 0), a larger molecule 
is degraded more (less) rapid than a smaller one. If p* < 0, the bonds near the 
center of a molecule break preferentially to those near the ends. If /3* > 0, the 
opposite case occurs. The parameter /3* is restricted by 0’ s 4 because the rate 
function K(M’,M) is defined as fulfilling the condition K(M’,M) 2 0 for all M 
values between 0 and M’. (For example, for M = M ‘ / 2 ,  the terms in brackets in 
Eq. 2 take the form 1 - /3*/4 and, therefore, p* 5 4 results in K 2 0.) 

There are a variety of mechanisms, including acid hydrolysis [ l l ] ,  enzymatic 
attack (121, ultrasonic irradiation [13], and shear action [14, IS], leading to dextran 
degradation. During the degradation of dextranes the distribution function and 
their moments strongly change. Thus, in the framework of continuous kinetics, 
dextranes are of some interest. 

Browarzik and Koch [lo] applied their approximation method to dextran deg- 
radation by acid hydrolysis, by enzymatic attack, and by ultrasonic irradiation 
through comparison of the calculated and the experimental (1 1-13] results. In all 
three cases highly positive values of p* were found, corresponding to a favored 
scission of bonds near the ends of a molecule. On the whole, the experimental 
results were reasonably described by Eq. (2), but there are three disadvantages to 
applying Eq. (2). First, fitting the parameters to the restriction 0’ 5 4 results in 
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CONTINUOUS KINETICS OF DEXTRAN DEGRADATION 399 

difficulties. In some cases, forbidden values of j3* (0’ > 4) describe the experimen- 
tal data better than does any value p* I 4. Second, in the treatment of Browarzik 
and Koch [lo], all occurring integrals possess closed solutions only for E* > - 1. 
Fortunately, this restriction does not matter for descriptions of dextran degrada- 
tion. Third, considering the experimental values of the nonuniformity U as a func- 
tion of the time t [ll-131, some dextran samples show a maximum. In contrary to 
that, U(t)  calculated by Eq. (2) never shows a maximum. (U = MJM, - 1, where 
M,, and M, are the number- and the weight-average molecular weights.) 

In this paper Eq. (2) is replaced by a more flexible expression in order to avoid 
the disadvantages mentioned above. In particular, this expression is able to describe 
U(t)  curves which possess a maximum. To appreciate the accuracy of Eqs. (2) and 
(3), dextran degradation by acid hydrolysis is considered in detail by comparing the 
calculated and the experimental [ l l ]  results. 

BASIC TREATMENT 

In this paper, instead of Eq. (2), the continuous rate function is assumed to be 

1 (3) 

The background of Eq. (3) is similar to that of Eq. (2). The first factor of Eq. 
(3) describes the scission probability in its dependence on the molecular weight of 
the polymer molecule, and the factor in brackets gives the dependence on the loca- 
tion of the bond to be broken within the molecule. If  E > 0 (c c 0), a larger 
molecule is degraded less (more) rapidly than a smaller one. If j3 > 0, the breakage 
of bonds near the ends of a molecule is favored. For the case p c 0, the bonds near 
the center of a molecule break preferentially to those near the ends. Because of the 
exponential form of the terms, in contrast to Eq. (2), there are no restrictions for 
the parameters. In particular, the parameter /3 may take very positive values which 
correspond to the strongly favored scission of bonds near the ends of a molecule. 

To solve Eq. (1) based on Eq. (3), w(M,t) is approximated by a Schulz-Flory 
distribution: 

K ( ~ ,  = a e - ~ M ’ [ e - 8 ( M / M ’ )  + e - 8 ( 1 - M / M ’ )  

which is assumed to be valid during the whole time of degradation. In Eq. (4) the 
quantities n, M,, and k are functions of the time t. Here, n is the total amount of 
substance, and M,, is the number-average molecular weight. During the degradation 
process the number of molecules and, corresponding to that, n increase. Simultane- 
ously, a, decreases in such a way that the total mass of substance nz, is a constant 
(law of conservation of mass). The quantity k is given by 

k(t) = l /U( t ) ;  U ( f )  = Mw(t)/Gn(t) - 1 ( 5 )  

where U is the nonuniformity describing the breadth of the distribution and M, is 
the weight-average molecular weight. 

To prove the approximation introduced by Eq. (4). Browarzik and Koch [lo] 
compared the results based on Eq. (4) and the exact results for the case of “random 
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400 BROWARZIK 

scission," i.e., K(M' ,A~)  = constant. The Schulz-Flory distribution was verified to 
be in reasonable accordance with the exact function w(M,t). 

By introducing a general definition of moments of w(M,t) by 

P ( t )  = j,"M'w(M,t)dM; r 2 0 (6) 

the quantities n(t), G,(t), and a,,(?) may be expressed by 

According to Eq. (4), the time dependence of the distribution function reduces to 
the time dependence of the total amount of substance n and of the parameters 
and k. 

With the aid of Eqs. (l), (3) (4), and (a), a relation for dTL;?"'/dt may be 
obtained. Here, double integrals over M (the limits are 0 and 00) and over M' (the 
limits are M and 00) occur. The double integrals may be written as a product of a 
single integral over M' (the limits are 0 and m) and of a single integral over y = 
M/M' (the limits are 0 and 1). Solving the first integral analytically, dji;?")/dt obeys 
the relation 

a- ( r )  r(k + r + 1) k' -- r (4 (k + E ~ , ) ' + ' + '  
- na 

dt 

(8) 
x (G,)'+fI' - -(1 1 - e-e)] 

B 
where Z, is given by 

I,  = j$e-&dy + e-BIAy'ebYdy (9) 

Setting r = 1 because of the conservation of mass during the reaction, dE'"/ 
dt = 0 or n(t)@,(t) = constant is obtained. If Eq. (8) is additionally applied to 
r = 0 and r = 2 with the aid of Eqs. (5) and (7), the temporal changes of the 
number-average molecular weight %, and of the nonuniformity U obey the rela- 
tions 

(10) 
a --(I - e-8) (E,)2(1 + j i ? n ~ ) - ( I + I ' ~ )  II= a 

dt B 

Based on Eqs. (10) and (1 l), one can calculate %At) and U(t) from the initial 
values of 2, and U by increasing the time step by step (using sufficiently small time 
steps). By knowing a,,(?) and U(t), with Eq. (4) the distribution function in its time 
dependence is known too. 

An essential advantage of Eq. (1 1) is the ability to describe a maximum in U(t) 
as is experimentally found in some cases [ll-131. This ability originates from the 
exponential form of the terms of Eq. (3). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
9
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



CONTINUOUS KINETICS OF DEXTRAN DEGRADATION 401 

The occurrence of a maximum in U ( f )  requires that /3 be large enough to 
make the term in brackets of Eq. (11) negative. Nevertheless, at the beginning of 
degradation, En still takes high values, and if r > 0, the fraction in front of the 
term in brackets is small, leading to dU/df > 0. During degradation, G,, decreases 
rapidly and the fraction in front of the brackets increases. If this fraction is large 
enough, the derivative dU/dt becomes negative, corresponding to the Occurrence of 
a maximum. 

According to the fraction in front of the brackets of Eq. ( l l ) ,  high initial 
values of a,, and U favor the occurrence of a maximum in U(f) ,  presuming that E 
> 0 and that /3 has a strong positive value. Thus, U(f )  may be expected to possess a 
maximum for degradation of high molecular samples of an initially broad distribu- 
tion if the bonds near the ends of a molecular are preferentially broken (g > 0) and 
if smaller molecules are degraded more rapid than larger ones (E  > 0). Initially, 
nonuniformity U increases because of the formation of small fragments. In further 
degradation the larger molecular species disappear, which leads to a decrease of U. 

MODELING OF DEXTRAN DEGRADATION 

To test the model introduced by this paper, dextran degradation by acid hy- 
drolysis is considered for two reasons. First, through the work of Basedow, Ebert, 
and Ederer [ l l ]  many experimental data of this type of degradation are available. 
Second, these authors investigated a sample which showed a strongly shaped max- 
imum. 

Basedow, Ebert, and Ederer [ l l ]  investigated degradation of four dextran 
samples at 8OoC in 0.12 N sulfuric acid. The initial concentration of dextran was 
1 !lo. Samples b, c, and d have a narrow molecular weight distribution, and Sample 
c is of low molecular weight. Sample u has a high molecular weight and a broad 
molecular weight distribution. The initial values Hn(0) and U(0) of the number- 
average molecular weight and of the nonuniformity are 

Sampleu: @,,(O) = 738,000g/mol; U(0) = 4.83 
Sample b: M,(O) = 72,700 g/mol; U(0) = 0.24 
Samplec: H J O )  = 4,38Og/mol; U(0) = 0.45 
Sample d M,,(O) = 117,000 g/mol; U(0) = 0.29 

The molecular weight distributions were measured by GPC in a time range of 
110 minutes (Samples u, b, c) or of 450 minutes (Sample d). In the case of Sample 
d, experimental values of a,, and U are given. All other samples are characterized 
by %?,, and by the “combined polydispersity ratio” CPR (instead of v). Here, CPR 
is defined by 

where Ez is the z-average molecular weight (az = M‘”/H‘”). Presuming a Schuk- 
Flory distribution, U(f )  may be calculated from CPR(f) according to 

(13) U ( f )  = (CPR(f) - 1)[1 + J 1  + (CPR(f) - l ) - ’ ]  

Because the four dextran samples considered were degraded under the same 
conditions (by acid hydrolysis), the description of all measured values for g,,(f) and 
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BROWARZlK 402 

U(r) should be possible with the same set of parameters a, 0, and E. Therefore, a 
single parameter set for all four dextran samples is determined by simultaneous 
fitting of En and U to all available experimental data. Doing so, the parameters of 
Eq. (3) take the following values: 

a = 2.871 x moV(g min); 0 = 6.597; E = 5.680 x lo-’ mol/g 

Considering the r value, smaller molecules are preferentially broken. Accord- 
ing to the @ value, the bonds near the ends of a dextran molecule break easier than 
those near the middle, corresponding to the Occurrence of many small fragments. 

For the sake of comparison, the parameters of Eq. (2) were fitted to the 
experimental data in the same way as the parameters of Eq. (3), yielding 

a+ = 5.068 x 10-s(mol/g)O.m/min; /3* = 3.623; E+ = -0.302 

Because of the negative E+ value, the scission of small molecules is favored. The 
highly positive values of fl+ shows that the bonds near the ends of the molecules are 
preferentially broken. Thus, the adapted parameters of both Eqs. (2) and (3) result 
in the same conclusions concerning the breakage probabilities. 

Figure 1 shows a comparison of the curves M,(O)/M,(t) calculated by Eq. (3) 
and of the corresponding experimental points in the 110-minute time range. The 
mean deviation of the calculated En values from the experimental ones is 11.0%. 
On the whole, the description of En in its time dependence is satisfactory. In Fig. 1 
the samples with narrow molecular weight distributions (Samples b, c, and d) have 
nearly linear curves. In the case of Sample a, there are considerable deviations from 
linearity in the time range up to 45 minutes. After a long degradation time, such 
deviations no longer exist. The curves G,,(O)/%,(r) calculated by the older Eq. (2) 
are not included in Fig. 1 because they are very similar to those calculated by the 
newer Eq. (3). Here, the mean deviation of the calculated Mn values from the 

10 i / 
samole d 

I / 

0 30 60 90 
t I min 

FIG. 1. Comparison of the curves calculated by Eq. (3) and of the experimental 
points for the time dependence of the number-average ratio gn(0)/fi,, for the Samples u, b, 
c, and d (x) Sample a, (A) Sample b, (0)  Sample c, (+) Sample d.  
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X 

/ 
sample d + 

4 T - 
a A sample b A 

,sample c 

0 30 60 90 
t I min 

FIG. 2. Comparison of the calculated curves and of the experimental points for the 
time dependence of the nonuniformity U for the Samples a, b, c, and d (-) calculated by 
Eq. (3), (- - -) Sample a calculated by Eq. (2), ( x )  Sample a, (A) Sample b, (0) Sample c, 
(+) Sample d.  

experimental ones is 5.0%. Thus, for a", Eq. (2) describes the experimentally 
found time dependence better than Eq. (3). 

Figure 2 shows a comparison of the curves U(t) calculated by Eq. (3) (full 
lines) and of the corresponding experimental points in the 1 10-minute time range. 
The mean deviation of the calculated Uvalues from the experimental ones is 17.4%. 
Thus, the description of the time dependence of nonuniformity U is less reasonable 
than that of an. However, one has to consider that the results of all four samples, 
which strongly differ in their initial values of 2,, and U, are based on the same 
parameter values. Furthermore, in the case of Sample a, the maximum of U(t) is 
described reasonable [except the extremely high experimental value U(15 min) = 
15.38, which is not included in Fig. 21. The curves calculated by the older Eq. (2) 
are very similar to those calculated by Eq. (3), except for Sample a. Therefore, only 
the curve U(t) for Sample a as calculated by Eq. (2) (dashed line) is included in Fig. 
2. The mean deviation of the U values calculated by Eq. (2) from the experimental 
ones is 23.9%. In the case of Sample a, Eq. (2) describes the experimental U(t)  data 
quite unsatisfactory. Instead of the experimentally found maximum, a continuous 
decrease of U with t is predicted by Eq. (2). 

CONCLUSIONS 

Continuous kinetics assuming first-order reactions is a comfortable way to 
treat dextran degradation. In particular, the mathematical treatment is simplified if 
the polydispersity of the dextrane is described by Schulz-Flory distributions, the 
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404 BROWARZIK 

parameters of which are functions of the time t .  The main problem is to find 
suitable expressions for the rate function K(M’ ,M) which measures the scission 
probability in dependence on the molecular weight and on the location of the bond 
to be broken within the molecule. This expression has to be able to describe degrada- 
tion of dextran samples strongly differing in the number-average 2n of the molecu- 
lar weight and in the nonuniformity CJ (which measures the breadth of the distribu- 
tion), In a previous paper the rate function defined by Eq. (2) was shown to be 
suitable for describing the degradation of some dextran samples. Unfortunately, 
this expression is not flexible enough to describe a maximum in CJ(t). Furthermore, 
the parameters are restricted by e* > - 1 and 8’ s 4, which is uncomfortable for 
the parameter fit. Therefore, to avoid these disadvantages, in this paper a new 
expression Eq. (3) for the rate function K(M’,M) is introduced. 

To test both expressions for K(M’,M), the parameters were adapted to experi- 
mental data [ll] of dextran degradation by acid hydrolysis. Both Eqs. (2) and (3) 
result in the same conclusions: 
1. Smaller dextran molecules are preferentially broken. 
2. The bonds near the ends of a dextran molecule break easier than those near the 

middle. 
The calculated time dependence of an is in reasonable accordance with the 

experimental data, particularly in the case of Eq. (2). The description of U(t) ,  
especially if based on Eq. (2), is less accurate. Whereas in the case of Sample a the 
curve V(t) calculated by Eq. (3) shows a maximum, as experimentally found, Eq. 
(2) predicts U will decrease continuously with time. Indeed, Eq. (2) partially gives 
better results than Eq. (3), but in contrast to Eq. (2), the newer Eq. (3) is able to 
describe Gn(t) and V(t) qualitatively correct in all cases considered. 
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